

2395 Speakman Dr. Mississauga, ON Canada L5K 1B3 P: 1 905 822 4111 F: 1 905 823 1446

info.toronto.industrials@element.com element.com

MÉTHODE D'ESSAI ET DE CLASSIFICATION VOLONTAIRE POUR LE SYSTÈME DE REVÊTEMENT MURAL À ÉCRAN PARE-PLUIE DRAINÉ ET VENTILÉ PAR L'ARRIÈRE DU

« PANNEAU ARCHITECTURAL EN ALUMINIUM DIZAL »

EN CONFORMITÉ AVEC LA NORME ASTM E330-14 ET CONJOINTEMENT AVEC LA NORME AAMA 509-14, SYSTÈME DE REVÊTEMENT MURAL

Destinataire du rapport : Dizal 4000, rue Jean-Marchand, bureau 108 Québec (Québec) G2C 1Y6 À l'attention de : Joël Côté-Cright Nº de téléphone : 418-915-9400, poste 309 Courriel: jcote@dizal.com 19-06-B0208-2 Nº de rapport: 6 pages, 1 annexe Nº de la proposition: 19-006-111940, RV1 7 mai 2020 Date:

ele

1.0 INTRODUCTION

La société Element Materials Technology inc. a été retenue pour évaluer le système de revêtement mural à écran pare-pluie « panneau architectural en aluminium Dizal » en conformité avec la norme ASTM E330-14 et conjointement avec la norme AAMA 509-14, comme indiqué dans la proposition nº 19-006-111940 RV1.

Note: Le contenu de ce document ne fait référence qu'au paragraphe traitant de la performance structurale énoncé dans la norme AAMA 509-14.

À sa réception, le spécimen s'est vu attribuer le numéro de spécimen d'Element suivant :

Description du spécimen du client

Panneau architectural en aluminium Dizal (Système à panneaux égaux / 4 panneaux)

Numéro de spécimen d'Element

19-06-B0208-1

2.0 PROCÉDURE

Description de l'essai	Méthode d'essai
Standard Test Method for Structural Performance of Exterior Windows, Doors, Skylights and Curtain Walls by Uniform Static Air Pressure Difference (méthode d'essai standard pour déterminer la performance structurale des fenêtres, portes, lanterneaux et murs-rideaux extérieurs par pression d'air différentielle statique uniforme)	ASTM E330-14
Voluntary Test Method and Classification Method for Drained and Back Ventilated Rain Screen Wall Cladding Systems (méthode d'essai volontaire et méthode de classification pour les systèmes de revêtement mural à écran pare-pluie drainé et ventilé par l'arrière)	Norme AAMA 509-14, section 5.8.1 – en référence à la norme ASTM E330-14
Performance structurale	

Note : Les unités du SI sont les principales unités de mesure.

2.0 PROCÉDURE (SUITE)

Description et détails de la section de mur d'essai :

La section de mur de fond d'essai (membrane pare-air/eau) a été construite dans une charpente d'essai d'Element selon le dessin détaillé ci-dessous, conformément à la section 5.0 de la norme AAMA 509-14.

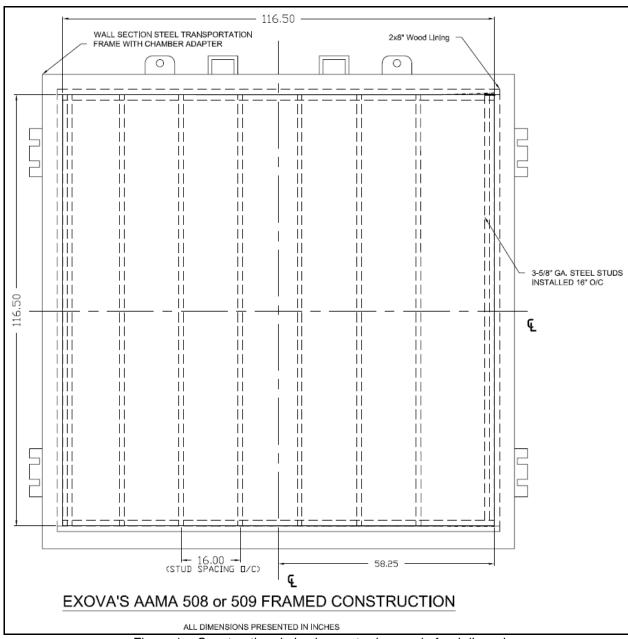


Figure 1 – Construction de la charpente du mur de fond d'essai

2.0 PROCÉDURE (SUITE)

Une fois le mur de fond terminé, les joints de plexiglas et les têtes de vis ont été scellés pour assurer l'étanchéité de l'ensemble. Le canal de drainage ou le système de collecte de l'eau a été installé dans l'ensemble de la barrière pare-eau/air de simulation, et un robinet-vanne a été installé dans la partie supérieure du spécimen.

Le mur d'essai a été pressurisé uniformément de manière statique dans les sens positif et négatif à une pression de 0,5 et 1,0 fois la pression nominale. Les flexions ont été mesurées au niveau de la charpente de support de la membrane pare-air/eau pour répondre aux critères de flexion par défaut de L/175.

Le mur d'essai a été soumis à une pression d'épreuve structurale dans les sens positif et négatif à une pression de 1,5 fois la pression nominale. Les flexions ont été mesurées au niveau de la charpente de support de la membrane pare-air/eau, et la flexion maximale a été déclarée.

L'application du système de revêtement sur le mur de fond d'essai a été effectuée par le personnel autorisé de Dizal le 11 mars 2020; voir la section 3.0 pour plus de détails. Comme le permet la note 5 de la norme AAMA 509-14, le périmètre du spécimen a été scellé à la fixation dans laquelle la section de mur avait été construite. Aucun trou de drainage ou d'évacuation et aucune zone critique du spécimen qui serait affectée par l'infiltration ou le drainage d'eau ou par la pression différentielle n'ont été obstrués.

3.0 DESCRIPTION ET CONSTRUCTION DU PANNEAU D'ESSAI

La description et la construction suivantes ont été fournies par Dizal.

Description du panneau à écran pare-pluie: Les panneaux composites en aluminium avaient une épaisseur de 4 mm (0,165 po). Les panneaux ont été construits avec une âme en plastique de 3,2 mm (0,125 po) d'épaisseur et deux peaux intérieures et extérieures en aluminium de 0,4 mm (0,015 po) d'épaisseur, collées à l'âme en plastique. Les bords de tous les panneaux ont fait appel à une extrusion périmétrique en aluminium en forme de « J », collée au panneau composite en aluminium à l'aide d'un ruban continu VHB de 3M. Un « raidisseur » en aluminium extrudé en forme de « H », de 20 mm (0,78 po) de large et de 13,55 mm (0,53 po) d'épaisseur, a été collé à l'arrière de chaque panneau à l'aide de ruban VHB de 3M.

Description de la construction du mur à écran pare-pluie : L'appui faisait appel à une « bande de départ » et à un « capuchon de finition » en deux pièces sur toute la longueur du mur, fixés aux montants en acier avec des vis Tek #8 x de 1 po de long, espacées de 406 mm (16 po) centre en centre. Les panneaux inférieurs ont été glissés dans la « bande de départ » et fixés aux montants en acier avec une « bande de fixation double » de 609 mm (24 po) de long à l'aide de vis Tek #8 de 1 po de long, espacées de 406 mm (16 po) centre en centre. Les panneaux supérieurs ont ensuite été glissés dans les « bandes de fixation doubles » horizontales et fixés au linteau avec des « bandes de départ » de 1 218 mm (48 po) de long à l'aide de vis Tek #8 de 1 po de long, espacées de 406 mm (16 po) centre en centre. Une « bande de recouvrement des vis » en aluminium extrudé a été utilisée dans les joints verticaux et horizontaux pour dissimuler les vis et les « bandes de fixation doubles ».

Pour plus de détails sur le système de panneaux à écran pare-pluie, voir l'annexe A.

4.0 RÉSULTATS

Tableau 1 – Norme AAMA 509-14, section 5.8.1, en référence de la norme ASTM E330-14, performance structurale statique (précharge et pression nominale) (1) N° de spécimen d'Element : 19-06-B0208-1 (7 avril 2020)

the appearment a Element 1 to the Education 1 (1 avril 2020)					
Essai	Exigences	Résultats des essais	Commentaire		
	ASTM E330-14 Précharge (pression nominale x 0,5) +/- 1 796 Pa (37,50 lb/pi²)(2) Aucun dommage permanent	Aucun dommage permanent observé	Aucun dommage visuel ou gondolage observé		
Performance structurale statique (Section 5.8)		Longueur du goujon (L) = 2 475 mm (97,44 po)			
		Admissible $(L/175) = 14,14 \text{ mm } (0,56 \text{ po})$			
	ASTM E330-14	Flexion nette verticale à la pression nominale:			
	Pression nominale	+ 3 591 Pa (75,00 lb/pi²) = 6,90 mm (0,27 po)			
	+/- 3 591 Pa (75,00 lb/pi²) (2)	- 3 591 Pa (75,00 lb/pi²) = - 8,68 mm (-0,34 po)	Satisfait aux exigences		
	Signaler la flexion du mur de soutien	Flexion nette horizontale à la pression nominale:	L/175		
		+ 3 591 Pa (75,00 lb/pi²) = 11,21 mm (0,44 po)			
		- 3 591 Pa (75,00 lb/pi²) = -13,77 mm (0,54 po)			
(1) 0504 D		- Aucun dommage permanent observé			

^{(1) 3591} Pa = 76,5 m/s (ou 171 mph / 276 km/h). Calcul basé sur la formule d'Ensewiler, où P = 0,613·V², V est m/s et P est N/m²

Tableau 2 – NORME AAMA 509-14, section 5.8.1, en référence de la norme ASTM E330-14, performance structurale statique (pression structurale) (2) N° de spécimen d'Element : 19-06-B0208-1 (13 avril 2020)

Essai	Exigences	Résultats des essais	Commentaire
Performance structurale statique (Section 5.8)	ASTM E330-14 Pression structurale d'essai (1,5 x pression nominale) +/- 5 387 Pa (112,50 lb/pi²) (2) - Aucun dommage permanent - Signaler la flexion du mur de soutien	Flexion nette verticale à la pression nominale: + 5 387 Pa (112,50 lb/pi²) = 10,90 mm (0,43 po) - 5 387 Pa (112,50 lb/pi²) = - 14,09 mm (-0,55 po) Flexion nette horizontale à la pression nominale: + 5 387 Pa (112,50 lb/pi²) = 18,36 mm (0,72 po) - 5 387 Pa (112,50 lb/pi²) = - 22,33 mm (0,88 po) - Aucun dommage permanent observé	Aucun dommage permanent observé

 $^{^{(2)}}$ 5387 Pa = 93,7 m/s (ou 210 mph / 337 km/h). Calcul basé sur la formule d'Ensewiler, où P = 0,613 \cdot V², V est m/s et P est N/m²

ele

5.0 MODIFICATIONS DU SYSTÈME

Aucune modification n'a été apportée au système, comme indiqué à l'annexe A.

6.0 DISCUSSION

Le « panneau architectural en aluminium Dizal » (nº de spécimen d'Element 19-06-B0208-1) désigné dans le présent rapport a été mis à l'essai conformément à la norme ASTM E330-14, et les résultats sont présentés ici.

7.0 HISTORIQUE DES RÉVISIONS

Nº de rapport : Date : Description des révisions : 19-06-B0208-2 7 mai 2020 Document original

Auteur du rapport et de l'autorisation : Auteur de la révision :

Allan Lawrence, poste 11212 Superviseur, Mécanique du bâtiment Division de la science du bâtiment Jordan Church, B. Tech, poste 11546

Responsable opérationnel, Science du bâtiment et

essais d'incendie

Chef technique, Mécanique du bâtiment Division de la science du bâtiment

Le présent rapport et les services s'y rattachant sont couverts par les modalités contractuelles standard d'Element Materials Technology inc., que l'on peut consulter sur le site Web de l'entreprise www.element.com ou que l'on peut obtenir en composant le 1-866-263-9268.

ANNEXE A

Dessins de la maquette du mur à écran pare-pluie et renseignements sur le produit (4 pages)

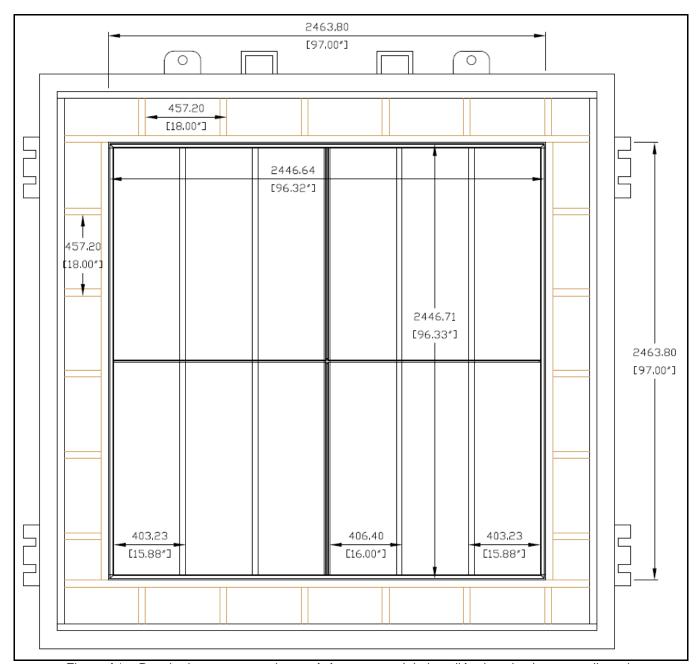


Figure A1 – Dessin des panneaux du mur à écran pare-pluie installés dans la charpente d'essai.

ALUMINUM

Highly resistant commercial grade, fire-resistant aluminum. Exceptional strength to weight ratio, perfect for all types of applications, interior and exterior.

PRIMER COAT

Specially formulated primer coat assures optimal adhesion between ACM panels and digital inkjet print.

HD PRINTING

A high-definition digital inkjet printer is used to print images of a wide range of scanned textures and outstanding color variations.

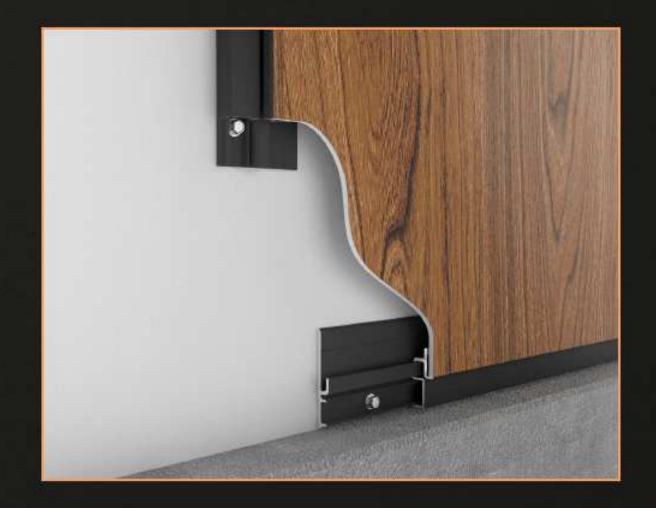
Z-CLEAR

A protective clear coat is applied to provide long-term protection against UV rays and fading.

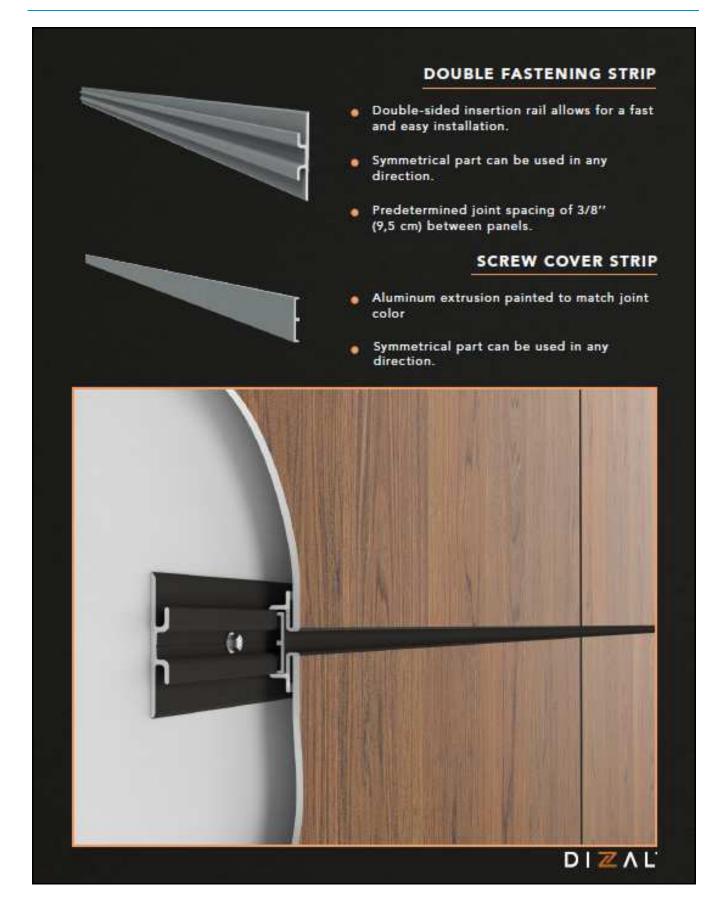
TESTS & CERTIFICATIONS*

- ASTM E84 Fire Resistance
- . ASTM G155 UV Resistance
- . ASTM E283 Static air infiltration
- . ASTM E330 Structural performance
- . ASTM D6578 Graffiti Resistance
- . ASTM D3359 Adhesion Testing

- . ASTM E331 Static water contacting AWB
- . AAMA 501.1 Dynamic Water infiltration test
- . AAMA 509 Rain Screen Performance
- . ASTM D4060 Abrasion Resistance
- LEED V4



^{*} visit our website at www.dizal.com for more information



STARTER STRIP AND FINISHING PART

- Two-part aluminum extrusion snapped together to hide screws.
- Color matching aluminum extrusion and joint.
- Innovative starter strip and finishing part creating unrivalled aesthetics.

